Investigation of Methane Emissions from Flares in a Turbulent Crosswind

- Global flaring volume: ~150 billion m³ each year (World Bank, 2020)
 - 23% increase in U.S. from 2018-2019
- >90% of global flaring is at upstream oil and gas production sites (Elvidge et al., 2016)
 - Generally simple designs / pipe flares
 - Limited representative data to accurately predict methane emissions
 - Flares in a turbulent crosswind
- Crosswind turbulence at scales matching the shear layer has potential to augment stripping of unburned fuel

Investigation of Methane Emissions from Flares in a Turbulent Crosswind

- Several times increase of methane emissions with introduction of a turbulent crosswind
- As wind speeds, turbulence increase:
 - Emissions increase
 - CH₄ C₂H₆ ratio in plume approaches ratio in flare gas
- Suggests emitted hydrocarbons have same structure as unburned fuel

Investigation of Methane Emissions from Flares in a Turbulent Crosswind

- Atmospheric turbulence strongly influences the efficiency and emissions of flares in crosswind
 - Length scales similar to the flame shear layer have greatest potential to strip fuel away from the flame
- Emissions trends, methane-ethane ratio data, and VOC sampling all suggest that flare inefficiency is primarily driven by fuel stripping
 - Methane rich flare gas leads to methane-rich emissions
- Future work will use an active turbulence grid to generate turbulence on the shear layer scale

